
3/6/13	

1	

Re-imagining CS1/CS2 with Android
Using the Sofia Framework
http://sofia.cs.vt.edu/sigcse2013

Stephen H. Edwards, Virginia Tech

Why?

¨  Mobile apps are popular with everyone (not just
CS folks)

¨  Android is popular
¨  Android uses Java
¨  … Why not use

Android in class?
¨  Because it’s

complicated for
beginners!

The bottom line …

¨  The Android API is designed for professionals
¨  Most basic tasks require framework glue:

¤ Anonymous inner classes
¤ Adapters
¤ Extra levels of indirection
¤ Type casting, dynamic type checking, instance checking

¨  All because the API uses well-known techniques that
have been around for decades

Android’s app lifecycle adds
complications, too …

¨  Android apps can be removed from memory at
nearly any time

¨  Users can switch between applications at any time,
possibly never to come back

¨  Control flow between multiple “screens” of an app
requires callbacks and indirection
¤ Simple models from window-based desktop

applications don’t work
¤ Neither do naïve student models of understanding

What do we re-imagine?

¨  What if …
¨  We could get rid of all the

“clutter”?
¨  Teach straight CS1/CS2

concepts in Java?
¨  In the context of Android

apps?
¨  With a clean, simple API

students can understand?

We’ve been working on Sofia

¨  Simplified Open Framework for Inventive Android
applications

¨  A better Android API
¨  Doesn't just simplify development
¨  Better abstractions
¨  Professional quality

3/6/13	

2	

At Virginia Tech

¨  Successful CS2 Integration
¤ Past five semesters
¤ Students clearly motivated, engaged
¤ Testing and automated grading support (Web-CAT)

¨  We’ve also pushed into CS1
¤ Past two semesters
¤ Using a customized version of Greenfoot where all

applications also run as Android applications

A sampling of assignments

In CS2:
¤ Adventure Time!
¤ Maze Solver
¤ Mine Sweeper
¤ Guitar Synthesizer
¤ “Design Your Own” App

In CS1:
¤ Scavenger Hunt
¤ Maze Runner
¤  Invasion of the Greeps
¤ Battleship
¤ Foxes and Rabbits
¤ Asteroids
¤ Build Your Own Game

Sofia’s design goals

¨  Not just simpler, but better
¤ For beginners and pros alike

¨  Principle of least astonishment (POLA)
¨  Convention over configuration
¨  Don’t repeat yourself (DRY)
¨  Use strong typing smartly
¨  Extra flexibility through annotations

¨  It just works (IJW)

How?

¨  Combine the best ideas from earlier beginner-
friendly frameworks
¤ Objectdraw
¤ JTF
¤ Testing

¨  With new framework design strategies
¤ A new event dispatch model
¤ Coding by convention
¤ Fluent interfaces

Areas of focused improvements

¨  Simplified beginner programs
¨  Approachable graphics/drawing
¨  Collision detection and physics
¨  Declarative animation support
¨  Cleaner multi-activity communication
¨  Employing multi-touch and gestures
¨  Common app models (CRUD)
¨  “Micro world” modeling

Simplifying intro programs

Can Hello World
look like this?

public class HelloWorldDemo

 extends ShapeScreen

{

 public void initialize()

 {

 add(new TextShape("Hello world”,

 180, 150));

 }

}

3/6/13	

3	

Shape-based drawing is also
important

… As is animation support
… with collision detection

Multi-activity communication And even music …

¨  A guitar fretboard
inspired by one of last
year’s “nifty assignments”
at SIGCSE

A New Approach to Event
Dispatch in Sofia
Re-imagining CS1/CS2 with Android

What does this have to do with
event dispatch?

¨  Most of the Android API is designed for pros, not
beginners

¨  Event listeners are ubiquitous, but require several
non-beginner language features

¨  “Events” aren’t hard for beginners—it is the
language features around them

3/6/13	

4	

In its simplest form, think of the
Observer design pattern

¨  In Java:

public interface Observer

{

 void update(Observable o, Object arg);

}

In Swing, a MouseListener is a good
example

public interface MouseListener

{

 void mouseClicked(MouseEvent e);

 void mousePressed(MouseEvent e);

 void mouseReleased(MouseEvent e);

 void mouseEntered(MouseEvent e);

 void mouseExited(MouseEvent e);

}

In Java, interfaces are typical

¨  This provides compile-time advantages
¨  Presence of handling method(s) on receiver is

checked statically

¨  Normal method invocation syntax
¨  Leverages polymorphism

… But there are disadvantages

¨  Receiver may not need/want all of the handling
methods in the interface

¨  The interface must use more general types for
parameters, to support all possible handlers

¨  Only one fixed entry point for each handling
method is supported

An aside about other models

¨  Objective-C (and Smalltalk before it) uses a
dynamic method lookup technique: avoids some of
the disadvantages, but also some advantage

¨  Delegates in C# are in between, avoiding some of
the disadvantages while trying to keep the
advantages

Let’s look at an example

public class Bird

 extends BitmapShape

{

 ...

}

public class Pig

 extends BitmapShape

{

 ...

}

3/6/13	

5	

… With interfaces

public class IrritatedAvians extends Controller

 implements CollisionListener

{

 public void onCollisionBetween(Shape s1, Shape s2) {

 if (s1 instanceof Bird && s2 instanceof Pig) {

 Bird bird = (Bird) s1;

 Pig pig = (Pig) s2;

 pig.die();

 bird.bounce();

 scoreboard.add(pig.pointValue());

 }

 else if (s1 instanceof Bird && s2 instanceof Brick) {

 ...

 }

 }

 public void onCollisionBetween(Shape s1, ViewEdges e) {

 }

}

Even harder for beginners …

¨  Event handlers often defined using anonymous inner
classes that implement listener interfaces

¨  … These serve as “glue” to transfer control to
behaviors of the surrounding class

The essence of the problem

public class IrritatedAvians extends Controller

 implements CollisionListener

{

 public void onCollisionBetween(Shape s1, Shape s2) {

 if (s1 instanceof Bird && s2 instanceof Pig) {

 Bird bird = (Bird) s1;

 Pig pig = (Pig) s2;

 pig.die();

 bird.bounce();

 scoreboard.add(pig.pointValue());

 }

 else if (s1 instanceof Bird && s2 instanceof Brick) {

 ...

 }

 }

 public void onCollisionBetween(Shape s1, ViewEdges e) {

 }

}

What if …

public class Pig extends BitmapShape {

 ...

 public void onCollisionWith(Bird bird) {

 die();

 }

}

public class Bird

 extends BitmapShape

{

 ...

 public void onCollisionWith(Pig pig) {

 bounce();

 }

 public void onCollisionWith(Board board) {

 ...

 }

}

Place all the dispatch in the
framework

¨  Use reflection to locate handler methods on first
use

¨  Use compiler-like inheritance search and
overload resolution to identify the best match on
the receiver

¨  Cache handlers for better performance

¨  Leverage strong typing to simplify and clean up
the design (POLA, coding by convention, IJW)

With any kind of event

public class Paddle extends RectangleShape

{

 ...

 public void onTouchMove(MotionEvent e)

 {

 setPosition(CENTER.anchoredAt(

 e.getX(), CENTER.of(this).y));

 }

}

public class Ball extends OvalShape {

 ...

 public void onCollisionWith(Shape shape)

 {

 yVelocity = -yVelocity;

 doAnimation(0);

 }

}

3/6/13	

6	

This is a “type-centric” approach

¨  Because dispatch choices are driven by the
types of the object(s) involved

¨  We’re using Java’s type system to drive the
method search, even though the search is
dynamic

… With advantages

¨  Only provide the handlers you need
¨  Only provide them where you need them

¨  No interface to implement
¨  No empty method stubs
¨  No adapters needed
¨  No extra “glue” to write by hand

… And another advantage

¨  Use the specific parameter type that is most
appropriate for your situation
¤ Not forced to use the most general type
¤ No instanceof tests needed
¤ No downcasts needed

… And another …

¨  Can have multiple handlers on the same
receiver for different types of arguments
¤ No instanceof tests needed
¤ No “internal dispatch code” needed
¤ No anonymous inner classes needed

Disadvantages

¨  Performance
¤ Reflective dispatch is more costly than standard

method invocation
¤ Other search/lookup costs can be minimized

¨  Gives up static checks against an interface to
confirm handler methods are present
¤ Still fully type-safe, however

Let’s talk!

3/6/13	

7	

Additional considerations

¨  Handling multi-object events
¨  Handling multiple receivers (or multiple

handling methods)
¨  Supporting alternative parameter choices,

instead of simply subtyping
¨  Providing additional name flexibility

public class Ball extends OvalShape {

 ...

}

public void onCollisionWith(Brick brick)

{

 ...

}

Multi-object events

Could use
boolean instead

public void onCollisionWith(

 Set<Brick> bricks)

{

 yVelocity = -yVelocity;

 doAnimation(0);

}

Multiple receivers work the same

¨  Dispatch to all, allowing each handler to
preempt the remaining ones with a boolean
return value

¨  Void methods can be used too (indicating no
preemption)

Alternative parameter choices

public class Paddle extends RectangleShape

{

 ...

 public void onTouchMove(MotionEvent e)

 {

 ...

 }

}

public class Paddle extends RectangleShape

{

 ...

 public void onTouchMove(int x, int y)

 {

 ...

 }

}

Annotations for flexibility

public class Pig extends BitmapShape {

 ...

 public void onCollisionWith(Bird bird) {

 die();

 }

}

public class Pig extends BitmapShape {

 ...

 @Handles("onCollision")

 public void die(Bird bird) {

 ...

 }

}

public class Pig extends BitmapShape {

 ...

 @Handles("onCollision”, Bird.class)

 public void die() {

 ...

 }

}

public class Pig extends BitmapShape {

 ...

 @Handles("onCollision”)

 public void die() {

 ...

 }

}

What About Non-Graphical
apps?
Re-imagining CS1/CS2 with Android

3/6/13	

8	

Let’s take a look at a “tip calculator”

¨  We use this as a lab assignment
in CS2

¨  Simple text input
¨  Radio buttons
¨  Simple event handling
¨  Observable

First, an MVC-style “model” class

public class TipModel extends sofia.util.Observable
{
 private float billAmount;
 private float tipRate;

 public float getBillAmount()
 {
 return billAmount;
 }

 public float getTipRate()
 {
 return tipRate;
 }

 public float getTipAmount()
 {
 return billAmount * tipRate;
 }

 public float getBillTotal()
 {
 return billAmount + getTipAmount();
 }
}

The model includes two mutators

public class TipModel extends sofia.util.Observable
{
 ...
 public float setBillAmount(float newBillAmount)
 {
 billAmount = newBillAmount;
 notifyObservers();
 }

 public float setTipRate(float newTipRate)
 {
 tipRate = newTipRate;
 notifyObservers();
 }
}

Create the layout graphically

The screen is the MVC “view”

public class TipCalculatorScreen extends Screen
{
 private EditText billAmount;
 private EditText tipAmount;
 private EditText billTotal;

 private TipModel tipModel;

 public void initialize()
 {
 tipModel = new TipModel();
 tipModel.addObserver(this);
 tipModel.setTipRate(0.15f);
 }

 ...
}

Event handling for the radio buttons

public class TipCalculatorScreen extends Screen
{
 ...

 public void tip15Clicked()
 {
 tipModel.setTipRate(0.15f);
 }

 public void tip18Clicked()
 {
 tipModel.setTipRate(0.18f);
 }

 public void tip20Clicked()
 {
 tipModel.setTipRate(0.20f);
 }
}

3/6/13	

9	

… When the amount is edited

public class TipCalculatorScreen extends Screen
{
 ...

 // Called when "done” or "enter” is pressed
 // in the billAmount edit control
 public void billAmountEditingDone()
 {
 float amount = 0.0f;

 try
 {
 Float.parseFloat(
 billAmount.getText().toString());
 }
 catch (NumberFormatException e)
 {
 // Leave amount at 0.0f
 }

 tipModel.setBillAmount(amount);
 }
}

… When the model changes

public class TipCalculatorScreen extends Screen
{
 ...

 // Called when the model changes
 public void changeWasObserved(TipModel theTipModel)
 {
 String tipAmountString = String.format(
 "%.2f", tipModel.getTipAmount());
 String billTotalString = String.format(
 "%.2f", tipModel.getBillTotal());

 tipAmount.setText(tipAmountString);
 billTotal.setText(billTotalString);
 }
}

Contrast with Java’s Observable

¨  In Java:

public interface Observer

{

 void update(Observable o, Object arg);

}

Contrast with Java’s Observable	

¨  In java.util:
public interface Observer

{

 void update(Observable o, Object arg);

}

public class Observable

{

 public void addObserver(Observer o) ...

 public void notifyObservers() ...

 public void notifyObservers(Object arg) ...

}

Let’s talk!

Multi-screen Apps
Re-imagining CS1/CS2 with Android

3/6/13	

10	

Let’s look at a list-driven app

@OptionsMenu
public class MediaListScreen extends ListScreen<MediaItem>
{
 ...

 // Called when an item in the list is clicked
 public void ListViewItemClicked(MediaItem item)
 {
 presentScreen(MediaItemScreen.class, item);
 }

 // Called when "add” menu item is clicked
 public void addItemClicked()
 {
 presentScreen(MediaItemScreen.class,
 new MediaItem());
 }

 ...
}

… Which uses an item detail screen

public class MediaItemScreen extends Screen
{
 private MediaItem item;
 private EditText itemTitle;
 private EditText itemAuthor;

 public void initialize(MediaItem item)
 {
 item = theItem;

 itemTitle.setText(item.getTitle());
 itemAuthor.setText(item.getAuthor());
 }

 public void saveItemClicked()
 {
 item.setTitle(itemTitle.getText().toString());
 item.setAuthor(itemAuthor.getText().toString());

 finish(item);
 }
}

… And back to the list

@OptionsMenu
public class MediaListScreen extends ListScreen<MediaItem>
{
 ...

 // Called when the item screen finishes
 public void mediaItemScreenFinished(
 MediaItem item)
 {
 if (item.isNew())
 {
 add(item);
 item.clearNew();
 }
 }
}

Animation
Re-imagining CS1/CS2 with Android

Irritated Avians

¨  121 lines in 6 classes (4 are < 15 lines each)

Animation with a “fluent” interface

public class Piggy extends OvalShape
{
 ...

 public void onCollisionWith(Bird bird)
 {
 die();
 }

 // "Kills" the piggy by fading it out, making it spin around, and then
 // removing it from the playing field.
 public void die()
 {
 animate(400).alpha(0).rotation(720).removeWhenComplete().play();
 }
}

3/6/13	

11	

The trail of dots is also animated

public class TrailDot extends OvalShape
{
 public TrailDot(Bird bird)
 {
 super(CENTER.of(bird), 0.25f);

 ...

 // Begin an animation with a half-second duration, starting after one
 // second, that fades the dot out and removes it from the field when
 // complete.
 animate(500).delay(1000).alpha(0).removeWhenComplete().play();
 }
}

Let’s talk!

Bringing Android to CS1
using Greenfoot(4Sofia)
Re-imagining CS1/CS2 with Android

The basic idea …

¨  Targeted at CS1 students who may have no prior
programming experience

¨  Eclipse and the Android SDK is not the ideal place
to start them off

¨  Need:
¤ Simple, graphical programming tasks
¤  In a no-experience-necessary environment
¤ With direct visual feedback
¤ That is still Android-compatible

The details

¨  sofia.micro: A Sofia-based package that
supports micro-world applications, layered on top
of basic 2D shape support

¨  An open-source fork of Greenfoot
¨  Completely reimplemented the sofia.micro core

under Swing
¨  Result: Greenfoot4Sofia uses Sofia’s API for micro-

world applications, but apps are retargetable to
Android

Greenfoot4Sofia

3/6/13	

12	

Enhancements to “stock” Greenfoot

¨  Electronic project submission for grading
¨  Unit testing support
¨  Support for scenario-specific library classes that

are not provided in source form
¨  Event-driven programming for user interaction
¨  Support for sequential logic solutions when

desired, instead of purely cell-automata-like
approach

Micro-world: LightBot

Micro-world: Jeroo Jeroos on Maze Island

Any Greenfoot-style world The Greeps contest (from SIGCSE)

3/6/13	

13	

Asteroids The basics of moving

public class Ship extends Actor
{
 private int speed;

 public void act()
 {
 move(speed);
 }

 public void dpadNorthIsDown()
 {
 speed++;
 }

 public void dpadEastIsDown()
 {
 turn(5);
 }

 public void dpadWestIsDown()
 {
 turn(-5);
 }
 ...
}

… And collisions

public class Asteroid extends MovingActor
{
 ...

 public void act()
 {
 super.move();

 // Did we hit a ship?
 Ship ship =
 getOneIntersectingObject(Ship.class);
 if (ship != null)
 {
 ship.remove();
 this.remove();
 }
 }
}

Create your own game

Thank you!

¨  Talk to me!

